Some Reactions of 1-Alkyl-1,2,3,4-tetrahydropyridines with Organic Azides. Synthesis of 1-Alkylpiperidylidene-2-sulfonamides

Brent K. Warren and Edward E. Knaus*

Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8 Received January 25, 1988

The 1,3-dipolar cycloaddition reaction of 1-substituted-1,2,3,4-tetrahydropyridines **4a-d** with organic azides **5** afforded the respective 1-substituted-piperidylidene-2-sulfonamides **6**. In contrast, the reaction of (E)-1-(1-propenyl)-1,2,3,4-tetrahydropyridine (**4e**) with 4-chlorobenzenesulfonyl azide yielded **6m** as well as 1-(4-chlorophenyl)sulfonimine-1,2,3,4-tetrahydropyridine (**7**) arising from addition of the azide to the (E)-1-(1-propenyl) substituent of **4e**.

J. Heterocyclic Chem., 25, 1379 (1988).

The 1-methylpiperidine ring system is a common structural moiety present in several classes of drugs that exhibit analgesic µ-receptor agonist activity such as morphine, N-methylmorphinan, N-methyl-6,7-benzomorphan and meperidine [1]. In an earlier study we reported a facile regiospecific 1,3-dipolar cycloaddition reaction of 1methyl-1,2,3,4-tetrahydropyridine with benzenesulfonyl azide that yielded 1-methylpiperidylidene-2-benzenesulfonamide 1 which bears some structural similarity to the analgesic drug meperidine 2 [2]. The four characteristic structural features common to the major analgesics including meperidine are 1), a tertiary amino group with a methyl substituent; 2), a central carbon atom of which none of the valences are hydrogen; 3), a two carbon chain separating the tertiary nitrogen atom from the central carbon atom; and 4), a phenyl ring system attached directly to the central carbon atom [1]. These structural comparisons

of 1 with 2 would require the sulfonyl sulfur atom to serve as a central carbon atom and the C=N moiety of 1 to act as a two carbon spacer. Replacement of the N-methyl group of analgesic μ -receptor agonists in the morphine class of compounds by a larger n-alkyl, N-allyl or N-cyclo-

alkylalkyl substituent provides drugs that exhibit analgesic μ -receptor antagonist activity which are non-addictive such as Naloxone[®] [1,3-6]. We now describe a facile procedure for the synthesis of 1-substituted-piperidylidene-2-arylsulfonamides **6** with analgesic μ -receptor antagonist activity.

Reaction of 1-cyclopropylmethyl-1,2,3,4-tetrahydropyridine 4a, prepared by isomerization of 1-cyclopropylmethyl-1,2,5,6-tetrahydropyridine 3a using potassium t-butoxide [7], with 4-chlorobenzenesulfonyl azide $5 (R^2 =$ 4-Cl-C₅H₄-) in dry ether proceeded rapidly at 25° with evolution of nitrogen gas to yield 1-cyclopropylmethylpiperidylidene-2-(4-chlorophenyl)sulfonamide 6a (R¹ = cyclopropylmethyl, R² = 4-Cl-C₅H₄-) in 56% yield. Similar reactions of 4a with 5 ($R^2 = 4-H_2N-C_6H_4$ - and 3-pyridyl) afforded 6b and 6c in 52 and 57% yield, respectively. A variety of other 1-substituted-piperidylidene-2-sulfonamides 6 possessing other R¹-substituents such as cyclobutylmethyl, n-Pr and i-Bu were also synthesized in order that the effect which these R1-substituents have upon analgesic u-receptor antagonist activity could be investigated. Thus, reaction of 4b-d with 5 as described above yielded the respective analogues 6d-1 in 37-91% yield as summarized in Table I.

The base catalyzed isomerization of 1-(2-propenyl)-1,2,5,6-tetrahydropyridine 3e using potassium t-butoxide afforded (E)-1-(1-propenyl)-1,2,3,4-tetrahydropyridine (4e) in 60% yield. The 1-(1-propenyl) substituent of 4e possesses the E-stereochemistry since the N-CH = CH and

Table I

Physical Constants of 1-Substituted-piperidylidene-2-arylsulfonamides 6

$$N-CH=NSO_2$$

			6	7		Analysis % Calcd./Found		
No.	R¹	R²	Yield %	Mp, °C	Formula	C	alcd./Foun H	d N
110.							- 0.5	0.55
6a	$c-C_3H_5CH_2-[a]$	4-Cl-C ₆ H ₄ -	56	114-115	$C_{15}H_{19}CIN_2O_2S$	55.12 54.90	5.86 5.86	8.57 8.44
6b	CHCH	4-H ₂ N-C ₆ H ₄ -	52	165	$C_{15}H_{21}N_5O_2S$	58.61	6.89	13.67
OD	c-C ₃ H ₅ CH ₂ -	4-11214-C6114-	32	100	0151121113020	58.23	6.87	13.29
6c	c-C _s H _s CH ₂ -	3-pyridyl	57	89	$C_{14}H_{19}N_3O_2S$	57.31	6.53	14.32
•						56.94	6.44	13.98
6d	c-C ₄ H ₇ CH ₂ - [b]	4-Cl-C ₆ H ₄ -	68	113	$C_{16}H_{21}CIN_2O_2S$	56.38	6.21	8.22
						56.32	6.35	8.16
6e	c-C ₄ H ₇ CH ₂ -	4-H ₂ N-C ₆ H ₄ -	86	216-217	$C_{16}H_{23}N_3O_2S$	59.79	7.21	13.07
						59.65	7.31	12.96
6f	c-C ₄ H ₇ CH ₂ -	3-pyridyl	91	56-57	$C_{15}H_{21}N_3O_2S$	58.61	6.89	13.67
_	_		60	107 100	C II CIN O S	58.25 53.41	6.95 6.08	13.51 8.90
6 q	n-Pr	4-Cl-C ₆ H ₄ -	68	107-108	$C_{14}H_{19}CIN_2O_2S$	53.41	6.17	8.90
	n-Pr	AUNCU	65	178-179	$C_{14}H_{21}N_{3}O_{2}S$	56.92	7.17	14.22
6h	n-rr	4-H ₂ N-C ₆ H ₄	00	110-119	G141121113O2D	57.04	7.26	14.05
6i	n-Pr	3-pyridyl	64	109-110	$C_{13}H_{19}N_3O_2S$	55.49	6.81	14.93
01	<i>1</i> 6-1 1	o-pyrrayr	•		-13193-2-	55.27	6.84	14.77
6j	<i>i</i> -Bu	4-Cl-C ₆ H ₄ -	37	106	$C_{15}H_{21}ClN_2O_2S$	54.78	6.44	8.52
٠,					10 #1	54.81	6.49	8.48
6k	i-Bu	4-H2N-C6H4-	49	184-185	$C_{15}H_{23}N_3O_2S$	58.22	7.49	13.58
		• • •				58.37	7.63	13.57
61	<i>i</i> -Bu	3-pyridyl	42	66-67	$C_{14}H_{21}N_3O_2S$	56.92	7.17	14.22
						56.57	7.24	13.97
6m	(E)-CH ₃ CH = CH-	4-Cl-C ₆ H₄-	43	106-107	$C_{14}H_{17}ClN_2O_2S$	53.75	5.48	8.96
						53.39	5.49	8.96
7	_	-	20	55	$C_{12}H_{13}ClN_2O_2S$	50.62	4.60	9.84
						50.37	4.64	9.63

[a] Cyclopropylmethyl. [b] Cyclobutylmethyl.

N-CH = CH- protons which appeared at δ 4.32 and 6.0, respectively exhibited a trans-coupling constant of 15 Hz. Reaction of 5e with one equivalent of 4-chlorobenzenesulfonyl azide yielded a mixture of 6m (43%) and 7 (20%) resulting from addition to the tetrahydropyridine C5-C6 and 1-(1-propenyl) olefinic bonds, respectively. A plausible mechanism for the formation of 7 could involve addition of 4-chlorobenzenesulfonyl azide (5, $R^2 = 4-Cl-C_5H_4$ -) to the (E)-1-(1-propenyl) substituent of 4e to form an unstable triazoline adduct from which diazoethane is expelled as indicated in Scheme II. This mechanism is consistent with that proposed for the formation of N-methyl-N-phenyl-N'-tosylsulfonylimine, obtained from the reaction of tosyl azide with 1-(N-methylaniline)-2-benzoylethylene [8]. A similar reaction of 4e with two equivalents of 4-chlorobenzenesulfonyl azide yielded 6m and 7 in 43 and 16% yield, respectively.

Pharmacological testing using the analgesic phenylquinone writhing assay [9] indicated that **6a** acts as an analgesic μ -receptor antagonist [10].

Scheme II

EXPERIMENTAL

Melting points were determined with a Buchi capillary apparatus and are uncorrected. Infrared spectra (potassium bromide unless otherwise indicated) were taken on a Perkin-Elmer or Nicolet 5DX FT spectrometer. Nuclear magnetic resonance spectra were determined for solutions in deuteriochloroform unless otherwise stated with TMS as internal standard using a Bruker AM-300 or Varian EM-360A spectrometer. All the products described gave rise to a single spot on tlc using three different solvent systems of low, medium and high polarity. Preparative thin layer chromatography (tlc) was performed on 20 x 20 cm silica gel G plates, 0.75 mm in thickness. The 1-substituted-1,2,3,4-tetrahydropyridines 4a-e were prepared by base catalyzed isomerization of 3a-e, respectively using the procedure of Beeken and Fowler [7]. The azides 5 were prepared

by the reaction of the respective sulfonyl chloride with sodium azide using the procedure described by Stout et al. [11].

1-Cyclopropylmethylpiperidylidene-2-(4-chlorophenyl)sulfonamide (6a). General Procedure.

A solution of 4-chlorobenzenesulfonyl azide (0.34 g, 1.56 mmoles) in 10 ml of ether was added dropwise to a solution of 1-cyclopropylmethyl-1,2,3,4-tetrahydropyridine (4a), 0.21 g, 1.53 mmoles) [7] in 20 ml of ether at 25° with stirring. Evolution of nitrogen gas was immediate. The reaction was allowed to proceed for 1 hour and the solvent was removed in vacuo. The yellow solid obtained was purified by preparative tlc with ether as development solvent to yield 6a (Rf 0.37, 0.26 g, 56%) as a white solid; ir: 1575 (C=N) cm⁻¹; ¹H nmr: δ 0.18-1.36 (m, 5H, cyclopropyl) hydrogens), 1.65-2.05 (m, 4H, C-4H, C-5H), 2.96-3.28 (m, 2H, C-3H), 3.31-3.61 (m, 4H, C-6H, -C H_2 -cyclopropyl), 7.42 (d, $J_{2,3} = J_{5,6} = 9$ Hz, 2H, C-5H phenyl hydrogens), 7.89 (d, $J_{2,3} = J_{5,6} = 9$ Hz, 2H, C-2H, C-6H phenyl hydrogens). Extraction of the band having Rf 1.0 with 75 ml hot acetone yielded 4-chlorobenzenesulfonyl azide (0.081 g, 26% recovery) which was identical (¹H nmr and micro tlc) to the authentic sample.

The 1-substituted-piperidylidene-2-sulfonamides 6b-1, which were also prepared using this general procedure, were purified as illustrated below: 6b and 6e (recrystallization from acetone); 6c, 6q and 6i (neutral aluminum oxide column chromatography with acetone as eluant); 6d and 6j [preparative tlc using ether as development solvent, 6d (Rf 0.44) and 6j (Rf 0.39)]; 6f (sublimation, 0.1 Torr, 65°); 6h (recrystallization from carbon tetrachloride-acetone); 6k [preparative tlc using ether:acetone (2:1 v/v) as development solvent, Rf 0.31]; 61 [preparative tlc using ether:acetone (5:1 v/v) as development solvent, Rf 0.39].

Some spectral data for selected compounds 6 are presented below.

1-Cyclobutylmethylpiperidylidene-2-(4-aminophenyl)sulfonamide (6e).

This compound had ir: 1565 (C=N), 3380 and 3460 (NH₂) cm⁻¹; ¹H nmr: δ 1.54-2.08 (m, 10H, C-4H, C-5H, cyclobutyl methylene hydrogens), 2.39-3.07 (m, 3H, C-3H, cyclobutyl methine hydrogen), 3.22-3.50 (m, 2H, C-6H), 3.60 (d, $J_{\text{CHCH}_2} = 7$ Hz, 2H, -CH₂-cyclobutyl), 5.43 (br s, 2H, NH₂, exchanges with deuterium oxide), 6.78 (d, $J_{2,3} = J_{5,6} = 8$ Hz, 2H, C-3H, C-5H phenyl hydrogens), 7.54 (d, $J_{2,3} = J_{5,6} = 8$ Hz, 2H, C-2H, C-6H phenyl hydrogens).

1-n-Propylpiperidylidene-2-(3-pyridyl)sulfonamide (6i).

This compound had ir: 1560 (C=N) cm⁻¹; ¹H nmr: δ 0.86 (t, J = 7 Hz, 3H, Me), 1.34-2.11 (m, 6H, C-4H, C-5H, C H_2 CH₂), 3.00-3.26 (m, 2H, C-3H), 3.26-3.61 (m, 4H, C-6H, C H_2 CH₂CH₃), 7.40 (d, J_{4,5} = 8 Hz of d, J_{5,6} = 5 Hz, 1H, pyridinyl C-5H), 8.23 (d, J_{5,6} = 5 Hz of d, J_{4,6} = 2 Hz, 1H, pyridinyl H-6), 8.75 (d, J_{4,5} = 8 Hz of d, J_{4,6} = 2 Hz of d, J_{2,4} = 2 Hz, 1H, pyridinyl H-4), 9.17 (d, J_{2,4} = 2 Hz, 1H, pyridinyl H-2).

1-Isobutylpiperidylidene-2-(4-chlorophenyl)sulfonamide (6j).

This compound had ir: 1570 (C=N) cm⁻¹; ¹H nmr: δ 0.83 (d, J = 7 Hz, 6H, CHMe₂), 1.48-2.23 (m, 5H, C-4H, C-5H, CHMe₂), 2.91-3.48 (m, 6H, C-3H, C-6H, NCH₂CH), 7.40 (d, J_{2,3} = J_{5,6} = 8 Hz, 2H, C-3H, C-5H phenyl hydrogens), 7.86 (d, J_{2,3} = J_{5,6} = 8 Hz, 2H, C-2H, C-6H phenyl hydrogens).

(E)-1-(1-Propenyl)piperidylidene-2-(4-chlorophenyl)sulfonamide (6m) and 1-(4-chlorophenyl)sulfonimine-1,2,3,4-tetrahydropyridine (7).

A solution of 4-chlorobenzenesulfonyl azide (0.355 g, 1.63 mmoles) in ether (10 ml) was added dropwise to a solution of 4e (0.20 g, 1.63 mmoles) in ether (20 ml) at 25° with stirring. Evolution of nitrogen gas began 15 seconds after the final addition of the azide. The reaction was allowed to proceed for 1 hour, the solvent was removed in vacuo and the resulting viscous green oil was purified by preparative tlc using ether:petroleum ether (4:1 v/v) as development solvent. Extraction of the band having Rf 0.27 with 50 ml hot acetone yielded 6m (0.22 g. 43%) as a white solid; ir: 1540 (C = N) and 1600 (C = C) cm⁻¹; ¹H nmr: δ 1.65-2.23 (m, 7H, C-4H, C-5H, CHMe), 3.02-3.32 (m, 2H, C-3H), 3.32-3.80 (m, 2H, C-6H), 5.30 (d, $J_{CH=CH} = 15 \text{ Hz of q}, J_{CHMe} = 6 \text{ Hz}, 1H, CHMe), 7.32 (d, J_{CH=CH} = 15)$ Hz, 1H, CH = CHMe), 7.43 (d, $J_{2,3} = J_{5,6} = 8$ Hz, 2H, C-3H, C-5H phenyl hydrogens), 7.92 (d, $J_{2,3} = J_{5,6} = 8$ Hz, 2H, C-2H, C-6H phenyl hydrogens). Extraction of the band having Rf 0.48 with hot acetone (50 ml) afforded 7 (92 mg, 20%) as a white solid; ir: 1600 (C = N); 'H nmr: δ 1.80-2.31 (m, 4H, C-3H, C-4H), 3.58-3.85 (m, 2H, C-2H), 5.20-5.44 (m, 1H, C-5H), 6.42 (d, $J_{5.6} = 8$ Hz, 1H, C-6H), 7.41 (d, $J_{2.3} = J_{5.6} = 8$ Hz, 2H, C-3H, C-5H phenyl hydrogens), 7.84 (d, $J_{2,3} = J_{5,6} = 8$ Hz, 2H, C-2H, C-6H phenyl hydrogens), 8.24 (s, 1H, CH=N). Extraction of the band having Rf 0.85 with hot acetone (50 ml) gave 4-chlorobenzenesulfonyl azide (18 mg, 5% recovery) which was identical (micro tlc and 'H nmr) with an authentic sample.

Acknowledgements.

We are grateful to the Medical Research Council of Canada (Grant MT-4888) for financial support of this work and to the Alberta Heritage Foundation for Medical Research for a Studentship to one of us (B. K. W.).

REFERENCES AND NOTES

- [1] "Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry", R. F. Doerge, ed, 8th Ed, J. B. Lippincott Co., Philadelphia, 1982.
- [2] A preliminary account of this work was published, B. K. Warren and E. E. Knaus, J. Heterocyclic Chem., 19, 1259 (1982).
 - [3] A. A. Kurland and L. McCabe, J. Clin. Pharmacol., 16, 66 (1976).
- [4] B. A. Judron, D. U. Himmelburger and A. Goldstein, Clin. Pharmacol. Ther., 27, 492 (1980).
 - [5] K. Unna, J. Pharmacol. Exp. Ther., 79, 27 (1943).
 - [6] H. F. Fraser and L. S. Harris, Ann. Rev. Pharmacol., 7, 277 (1967).
 - [7] P. Beeken and F. W. Fowler, J. Org. Chem., 45, 1336 (1980).
- [8] R. Fusco, G. Bianchetti, D. Pocur and R. Ugo, Chem. Ber., 96, 802 (1963).
- [9] H. O. Collier, L. C. Dineen, C. A. Johnson and C. Schneider, Brit. J. Pharmacol. Chemother., 32, 295 (1968).
- [10] E. E. Knaus, B. K. Warren and T. A. Ondrus, U. S. Patent, 4,468,403, August 28, 1984.
- [11] D. M. Stout, T. Takaya and A. I. Meyers, J. Org. Chem., 40, 563 (1975).